Baer Invariants in Semi-abelian Categories I: General Theory T. Everaert and T. Van Der Linden

نویسندگان

  • T Everaert
  • T Van Der Linden
چکیده

Extending the work of Fröhlich, Lue and Furtado-Coelho, we consider the theory of Baer invariants in the context of semi-abelian categories. Several exact sequences, relative to a subfunctor of the identity functor, are obtained. We consider a notion of commutator which, in the case of abelianization, corresponds to Smith’s. The resulting notion of centrality fits into Janelidze and Kelly’s theory of central extensions. Finally we propose a notion of nilpotency, relative to a Birkhoff subcategory of a semiabelian category.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Baer Invariants in Semi-abelian Categories Ii: Homology

This article treats the problem of deriving the reflector of a semi-abelian category A onto a Birkhoff subcategory B of A. Basing ourselves on Carrasco, Cegarra and Grandjeán’s homology theory for crossed modules, we establish a connection between our theory of Baer invariants with a generalization—to semi-abelian categories— of Barr and Beck’s cotriple homology theory. This results in a semi-a...

متن کامل

Baer Invariants in Semi-abelian Categories I: General Theory

Extending the work of Fröhlich, Lue and Furtado-Coelho, we consider the theory of Baer invariants in the context of semi-abelian categories. Several exact sequences, relative to a subfunctor of the identity functor, are obtained. We consider a notion of commutator which, in the case of abelianization, corresponds to Smith’s. The resulting notion of centrality fits into Janelidze and Kelly’s the...

متن کامل

A Note on Double Central Extensions in Exact Mal’tsev Categories

The characterisation of double central extensions in terms of commutators due to Janelidze (in the case of groups), Gran and Rossi (in the case of Mal’tsev varieties) and Rodelo and Van der Linden (in the case of semi-abelian categories) is shown to be still valid in the context of exact Mal’tsev categories.

متن کامل

Relative commutator theory in semi-abelian categories

Based on the concept of double central extension from categorical Galois theory, we study a notion of commutator which is defined relative to a Birkhoff subcategory B of a semi-abelian category A. This commutator characterises Janelidze and Kelly’s B-central extensions; when the subcategoryB is determined by the abelian objects inA, it coincides with Huq’s commutator; and when the category A is...

متن کامل

ar X iv : m at h / 07 01 81 5 v 1 [ m at h . A T ] 2 9 Ja n 20 07 HIGHER HOPF FORMULAE FOR HOMOLOGY VIA GALOIS THEORY

We use Janelidze's Categorical Galois Theory to extend Brown and Ellis's higher Hopf formulae for homology of groups to arbitrary semi-abelian monadic categories. Given such a category A and a chosen Birkhoff subcategory B of A, thus we describe the Barr-Beck derived functors of the reflector of A onto B in terms of centralization of higher extensions. In case A is the category Gp of all groups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004